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Dynamics of traveling waves under spatiotemporal forcing
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We study dynamics of traveling waves under spatiotemporal forcing in nonequilibrium systems. Based on
the model equations where phase separation and chemical reactions take place simultaneously so that traveling
waves are formed in a self-organized manner, we apply a space-time dependent external force. Entrainment and
modulation of traveling waves are investigated numerically in one dimension. We develop a theoretical analy-

sis to understand the dynamics obtained.
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I. INTRODUCTION

Various self-organized patterns emerge in nonequilibrium
open systems. Spatiotemporal structures of these patterns
have been studied extensively both experimentally and theo-
retically for many years [1-3]. The effects of spatially uni-
form external forcing have also been investigated with tre-
mendous interest due to their potential application for nano/
mesoscopic domain control in material sciences. For
instance, photoinduced waves in liquid-crystalline monolay-
ers have been studied [4-6]. A global delayed feedback
method has been developed to investigate spatiotemporal
pattern formation by controlling catalytic CO oxidation in an
oscillatory surface chemical reaction [7].

This problem also has an important implication in biologi-
cal sciences such as coherent dynamics of interacting cells
and nonlinear stimuli-response phenomena of chemical net-
works in a living cell. In this respect, there are a number of
studies of synchronization of nonlinear coupled oscillators
with or without a uniformly oscillating external field [1,8].

However, there are less extensive studies for the effects of
spatiotemporal forcing in nonuniform systems having a spa-
tially regular structure. Experiments of convective nematic
fluid under spatially periodic forcing have been performed
[9] and a theoretical study has been available [10]. Influence
of temporal modulation on pattern formation has been inves-
tigated in convective fluids [11-13] and in chemical reac-
tions [14,15]. Only recently, experiments and theoretical con-
sideration have began for Turing patterns influenced by
spatiotemporal forcing. For example, effects of illuminating
light on a spatially periodic structure are investigated in
chemically reacting systems [16-20].

The purpose of the present paper is to investigate, theo-
retically and by numerical simulations, dynamics of traveling
waves under spatiotemporal external forcing. In our previous
papers, we introduced a model set of equations for phase
separated mixtures undergoing chemical reactions [21,22]
and studied the synchronization and modulation of motion-
less and propagating waves in two dimensions by applying
spatially uniform oscillating external disturbance [23]. The
external forcing was imposed by allowing one of the reaction
rates to be time dependent. Here we generalize this study to
the case of spatiotemporal external forcing and carry out nu-
merical simulations of dynamics of traveling waves in one
dimension and develop a theoretical analysis to understand
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the results of simulations. To our knowledge, despite the pre-
vious studies mentioned above, response of propagating pe-
riodic structures to the space-time dependent external distur-
bance has not been explored so far. In the present paper, we
consider the case that the spatial period of the external forc-
ing is the same as the intrinsic period of the traveling waves.
The incommensurate case will be published separately.

The organization of the present paper is as follows. In the
next section, we start with a brief explanation of the model
system and the linear stability analysis of the uniform equi-
librium solution. In Sec. III, we present the dynamical phase
diagram obtained numerically. To see when the entrainment
is broken, we develop a theory based on the amplitude equa-
tion for traveling waves. The special case where the external
frequency is equal to zero, i.e., motionless external forcing,
is investigated both by numerical simulations and theoreti-
cally in Sec. IV. The discussion is given in Sec. V. In the
Appendix, an alternative method of studying the stability
limit of entrainment is provided in terms of phase dynamics.

II. MODEL EQUATION AND LINEAR STABILITY

In our previous studies, we introduced the model system
of phase separation undergoing chemical reactions [21-23].
This mixture is composed of three chemical components A,
B, and C where A and B species tend to segregate each other
and there is a cyclic chemical reaction

"1 Y2 7
A—B—C—A (1)

with the reaction rates 7y, y,, and ;. We assume that other
components are also involved in the chemical reaction,
which are supplied to the system and removed from the sys-
tem sufficiently rapidly so that they are constant in both
space and time. Therefore these components modify only the
reaction rates.

By introducing the local concentrations ¢, ¢, and ¢ of
A, B, and C components respectively, the time-evolution
equations are given by [21]

W _ 2 9F
Pl 5¢+f(¢,¢), (2)
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FIG. 1. The wave-number dependence of Re A(g) (solid line)
and Im \(g) (dashed line) for D=1.0, 7=1.46, y,=0.3, ¥,=0.16,
and y3=0.05. The vertical and horizontal axes are dimensionless.
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where =, — g and ¢p= )4+ 5. We have imposed the con-
dition ¢, + g+ =1 which is justified by the assumption of
the uniformity of other chemical species as mentioned above.
The free energy functional F is given by

D T 1
F=fdr[5(Vw)2—§tﬁ2+Zlﬂ4], (4)

where D and 7 are positive constants. Generally speaking,
there are coupling terms between ¢ and ¢ in the free energy,
e.g., through the ¢ dependence of 7. However, for the sake of
simplicity, we have ignored such a nonlinearity. The last
terms in Egs. (2) and (3) arise from the chemical reaction (1)
and are given, respectively, by

flh¢) =— (71 +%>t//-<%-%+ 73>d>+ ¥, (5)

g(¢,¢)=§w—<%+%>¢+ Vs (6)
It is noted that the diffusion term is not considered in Eq. (3).
We have verified that the diffusion of ¢ does not alter essen-
tially the dynamics described below [22].
By putting f=g=0, the uniform stationary solution of
Egs. (2) and (3) are readily obtained as

(v, =)
0= , (7)
YiY2t Y2Vst V3
»(v2+ 1)
(8)

0= .
VY2t Y2yt Vi

To examine the linear stability of the uniform solution we
put ¢—ify=c; exp(At+igx) and ¢— py=c, exp(\t+igx) with
¢; and ¢, constants and substitute into Egs. (2) and (3). In
this section, we fix the parameters as D=1, y;=0.3, and y;
=0.05 and the remaining two parameters 7and 7, are varied.
At some range of the parameters, the eigenvalue is complex.
An example is shown in Fig. 1 for 7=1.46 and ,=0.16 as a
function of wave number. Note that the real part becomes
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FIG. 2. Bifurcation diagram for the uniform stationary solution
for D=1, ¥,=0.3, and y3=0.05. The full line and the dotted line are
the Hopf bifurcation line and the Turing-type bifurcation line, re-
spectively. A traveling wave appears at the parameters indicated by
the symbol + whereas a motionless pattern at the symbol X.

positive at a finite wave number ¢, and the imaginary part
has a minimum at g=g,. The latter is a general property of
the present model system. The expressions of ¢, 7., and the
critical frequency w,. which is the imaginary part of the ei-
genvalue at g=¢q, are given for T>3gb(2) by

7__3¢02)l/2

=— s 9
qe ( > ©)
7.=30 +2(n + v+ )2 (10)

c

(71 Vo= VY3 — Vs

1/2
-y . 11
5 Y3 ) (11)

The linear stability analysis gives us the bifurcation dia-
gram as shown in Fig. 2 [22]. The value of 7 at the Hopf
bifurcation point for y,=0.16 is 7.~ 1.46 at which the criti-
cal wave number is ¢.~0.9 and the critical frequency w,
=~(.07. Just at the Hopf bifurcation line, a pair of the eigen-
functions of the linearized operator gives us

Yx,t) =W cos(xq.x — w,1), (12)

P(x,1) =D cos(xg.x — w.t+ 6), (13)

where the amplitudes ¥ and ® are not determined within the
linear theory and the phase difference is given by

&)’ (14)

0=tan‘1<
Y2t+27;

which yields 6= 0.494 for y,=0.16.

In order to study the behavior above the bifurcation lines
we have carried out numerical simulations of Egs. (2) and (3)
in one dimension. The Euler method is employed with the
time increment 0.001 and by dividing the space into 128
cells with the mesh size 0.5. The linear dimension of the
system is L=64 which is chosen to be as commensurate as
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FIG. 3. Spatial profiles of ¢(x,7) (solid line) and ¢(x,7) (dashed
line) for D=1.0, 7=1.6, ¥,=0.3, y%,=0.16, and y3=0.05. Both
(x,t) and ¢p(x,r) are propagating to the right at the same velocity.

possible with the spatial period 277/¢g.=~7 at the bifurcation
point. In this set of the parameters, there are nine wave trains
under the periodic boundary condition.

A motionless periodic pattern appears in the region indi-
cated by X in Fig. 2 whereas a propagating wave pattern
appears in the region +. It is emphasized that the motionless
solution is not due to the Turing mechanism but its origin is
related to microphase separation in block copolymers [24].
This is the reason why the diffusion term can be omitted in
Eq. (3) to obtain a motionless periodic structure. In order to
emphasize this property, we shall call the bifurcation a
Turing-type bifurcation to distinguish it from the ordinary
Turing instability.

Figure 3 shows the spatial variation of a propagating
wave. Since Eqgs. (2) and (3) are invariant under the transfor-
mation x — —x, the traveling wave can propagate either to the
right or to the left with the proper phase difference between
¢ and . Hereafter we choose (with an appropriate initial
condition) a wave traveling to the right without loss of gen-
erality. The phase difference is in good agreement with the
theoretical result given by Eq. (14).

It is mentioned that a similar self-organized formation of
traveling waves has also been studied both theoreticaly and
experimentally in adsorbed molecules on metals [25,26].

II1. PHASE DIAGRAM
The spatiotemporal forcing is added to Egs. (2) and (3) as
['(x,1) = e cos(gp — Q). (15)

This is a sinusoidal force traveling to the right at the velocity
/qy. Here we suppose that the system is exposed through a
periodically arrayed slit by illuminating light and the slit
moves at a constant velocity ()/q;. As a result, we assume
that the reaction rate vy; is modified such that y3— y;+1". We
have ignored a term I'¢ arising from the ;¢ term in Egs. (5)
and (6) providing a sufficiently small forcing e.

Under these conditions, the model equations (2) and (3)
can be written as

%l:Vz[—Vzlﬂ— T+ 1+ a i+ ard

+ e cos(gpx — Q1) + as, (16)

PHYSICAL REVIEW E 72, 046216 (2005)

d
f:blzp+b2¢+ € cos(qpx — Q) + bs, (17)

where

(18)

Y2
b2:—<3+7’3>’

by=;.

In the present paper, we confine ourselve to the case that
the spatial period of the external forcing is the same as that
of traveling waves, i.e., g;=q,. The case g7 g. will be pub-
lished separately. Hereafter, the parameters are fixed as 7
=1.6 and ,=0.16. The actual spatial period for 7=1.6 in the
absence of the external forcing is difficult to evaluate ana-
Iytically. However, since the value of 7is close to the critical
value 7., we assume that the actual wave number of the
traveling wave is not much different from ¢..

The dynamical behaviors of the traveling waves obtained
by changing the external frequency and the force strength €
are summarized in Fig. 4. This phase diagram is obtained by
the asymptotic behavior of the traveling wave after imposing
the external force. The region indicated by + shows that the
traveling wave is entrained with the external force so that it
propagates at the velocity (1/q.. When the frequency () of
the external forcing is much different from w. as in the re-
gion indicated by the diamond symbols, entrainment breaks
down and the traveling wave is modulated such that the am-
plitude as well as the propagating velocity is uniformly os-
cillating. When the velocity is decreased, the amplitude is
also decreased and vice versa. We have verified numerically
that the frequency of the modulation is proportional to |
—wy.

In the region for sufficiently small external frequency in-
dicated by the white inverse triangle the wave undergoes an
oscillatory motion. That is, the wave trains propagate to the
right and to the left alternatively and gradually move to the
right as a whole. In the region of the white triangle at ()
=0.01 and €=0.0035, the wave propagates to the left oscillat-
ing its amplitude despite the fact that the external forcing
moves to the right. This phenomenon is observed in the fol-
lowing process. First, we provide a traveling wave propagat-
ing to the right and then turn on the external force. The
traveling wave is reflected by the periodic external force and
changes the propagating direction. Although this reflection of
traveling waves is found only for one set of the parameters,
the result is reproducible. These respective behaviors are
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FIG. 4. Phase diagram for y,=0.16, 7=1.6, and g;=q.. The solid line is the theoretically obtained stability limit of the unmodulated
traveling wave having the same velocity as the external force. The meanings of the symbols are given in the text.

shown in the space-time plot of the concentration ¢ in Fig. 5.

In the region indicated by a black triangle for static exter-
nal force, i.e., =0, waves are trapped by the force (¢ is
large in the region where the force is small) and move back
and forth repeatedly in the confined interval of one wave-
length of the external force. The results for =0 will be
described in further detail in the next section.

Now we perform a theoretical analysis to understand the
dynamics. When the external forcing is not considered, the
amplitude equation near the Hopf bifurcation has been de-
rived from Egs. (2) and (3) [22]. When the external force is
weak as in the present study, the amplitude equation is modi-
fied as

Wy
—R AW, +B
or

> W, .

S - gl WalP Wyt €0 (19)
ox

where we are concerned, without loss of generality, only
with a wave traveling to the right, whose amplitude is de-

FIG. 5. (Color online) Space (horizontal)-time (vertical) plot of
i for (a) €=0.006 and Q=0.07, (b) €=0.005 and =0.01, and (c)
€=0.006 and Q=0.11. The value of ¢ is large (small) for lighter
(darker) regions.

noted by Wpy. This complex amplitude is defined through

(i) — [}WRe—ichHiwct + (}*eriqc —icul,r’ (20)

where X" is the complex conjugate of X and U is the eigen-
vector corresponding to the eigenvalue iw, at the Hopf bifur-
cation point and is given by
1
u=| b | (21)

l.(,l)c - b2

All the coefficients in Eq. (19) are complex, which we write
as A=A|+iA,. The coefficient € is proportional to the
strength € in Eq. (15). These are given by

2

A= T (22)

2

T—17.)b 2
A2= ( ) ZQC , (23)
2w,
B =2q., (24)
2b,q 2

By= "2 (25)

w

c
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3 24byrat’q.”
g1=5q£(1+24r1¢02q3— =) (@6
wC
3 2 ) b2+24b2r](//02qcz
82= 754 24r¢°q.” + . (@27)
2
, € a,” +a»b, )
€ =—\|—F""T"""], 28
! 2<(122+b22+wc2 28)
’ € ar W,
e=—|—-"5"—"]. 29
2 2(a22+b22+w62> 29)

For the typical set of the parameters chosen in the present
paper, the real part of these coefficients is positive whereas
the imaginary part is negative. The constants r; and r, in
Eqgs. (26) and (27) are defined, respectively, by

_3(ayby’ +3b,’ + 120,07 + 11byw,%)
"~ (9ayby +9b,> - 30,%)? + [18w,(a, + b)) >

(30)

6(1)63 31)
"7 9ayby + 95y — 30,2 + [18w,(a; + by) P

A remark is now in order. The amplitude equation for a
traveling wave generally has a term vdWp/dx with v a group
velocity [10]. However, such a term does not exist in Eq.
(19) because dw/dg=0 at g=q,. as shown in Fig. 1.

We examine the stability of the uniform stationary solu-
tion of Eq. (19). Putting Wy as Wr=Re'’ where R=Q+(1)
and 0=6y+(Q—-w)t+8(r) with r(r) and &(¢) small devia-
tions, the stationary solution satisfies

AIQ_g1Q3+6; cos(6y) + € sin(6p) =0, (32)

! !

Q-w.=A,—g,0°+ 3 cos(6p) — 3 sin(6y).  (33)

Eliminating 6, from these equations, we obtain

QXA -0+ 0 (0 -l =€’+€7,  (34)
where we have defined
of =, +A; - g,0%. (35)

Linearization of Eq. (19) with respect to (r) and &(¢) gives
us

‘;—: = (A, = 32,097 + € cos(6) — € sin(6)]5,  (36)

2

E = @[e{ sin(6p) — €5 cos(6y) ]r —2g,0r

- é[el’ cos(6p) + €, sin(6,)]6. (37)

The eigenvalues of this set of equations are given by
N=A;-2g0° £\, (38)

where
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20, 0

FIG. 6. (Color online) Space (horizontal)-time (vertical) plot of
i for (a) €=0.005, (b) €=0.01, and (c) €=0.02. The parameters are
chosen as =0, 7=1.6, and y,=0.16.

3g3) + (Ay + w,— Q)(40%g, — Ay — w.+ )],
(39)

N =[0%el -

When €]*+€,2<1 and |Q—wf|> 1, this is approximated as
A=A, -2g,0%+ilQ -l (40)

We have solved numerically Eq. (34) for a given set of the
parameters and searched the condition such that the real part
of \ given by Eq. (38) becomes positive. The solid lines in
Fig. 4 are obtained in this way and are the stability limit of a
completely entrained traveling wave. It is found that agree-
ment between the simulations and the theory is almost per-
fect except for the larger values of e. This might be attributed
to the approximation of weak external forcing in the ampli-
tude Eq. (19). It is emphasized that there are no adjustable
parameters in the above comparison. Note that the eigen-
value is as complex as Eq. (40) indicating that this is a Hopf
bifurcation. This is consistent with the observed oscillatory
modulation of traveling waves beyond the threshold.

An alternative way to evaluate the entrainment limit is to
derive the phase equation of motion starting with Eq. (19).
This is given in the Appendix. We have verified numerically
that the result is equivalent with the condition A >0 in Eq.
(40).

Before closing this section, we mention that the average
velocity of the modulated waves for larger values of () is
almost precisely equal to the intrinsic velocity given by
w./q.. However, the wave velocity for smaller values of () is
smaller than the intrinsic velocity. For example, the wave
velocity at 1=0.01 and €=0.004 is 0.068 whereas w./q,
=0.078.

IV. TRAPPED OSCILLATION FOR Q=0

In this section, we show the results for 1=0. That is, the
external forcing is motionless and spatially periodic. When
the strength of the external forcing € is small, waves can
propagate modulating the amplitude and the velocity periodi-
cally as shown in the phase diagram 4. The space-time plot
of ¢ in this case is displayed in Fig. 6(a). However, beyond
a certain critical value e= 61* =~(.0055 for 7=1.6 and vy,
=0.16, the waves cannot propagate any more but undergo a
coherent oscillation trapped by the external force as shown in
Fig. 6(b). There is another threshold of e=e, ~0.0141
above which the waves do not move but they are frozen as is
evident in Fig. 6(c). These transitions of the wave property
will be investigated theoretically below.
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FIG. 7. (a) Limit cycle oscillation of 6, and 6, for e=0.01 and (b) time evolution of @, (solid line) and 6, (dashed line) for e=0.01

obtained numerically from Egs. (47) and (48).

We shall show that the trapped oscillation can be under-
stood by a phase dynamics approach. As mentioned above,
numerical simulations reveal that Egs. (16) and (17) with
Q=0 have a motionless periodic solution for sufficiently
large values of e. What we examine here is the stability of
this stationary solution by decreasing €. We put

=+ i cos(q.x), (41)

b= o+ ¢ cos(gq.x).

We have verified that the harmonic variation of ¢ and ¢ is a
good approximant of the simulation results. Numerical simu-
lations indicate that the spatial variation of ¢ and ¢ is anit-
phase with respect to the external spatial modulation
€ cos(gx). This implies that one has to choose the negative
solution of ¢, and ¢,.

Substituting Egs. (41) and (42) into Egs. (16) and (17) and
ignoring higher harmonics, we obtain

(42)

3
— gt + 19 _q02<3%¢1 + Z‘/ﬁ) +a\ i +a,p +€=0,

(43)

b]l//|+b2¢1+6=0. (44)

This gives us the motionless periodic solutions #;=1; and
¢, =¢,. As mentioned above, these are negative. In order to
study the stability we introduce the time-dependent phase
variables as

b=+ 'Z’l cos g [x+ 6,(1)], (45)

¢ = o+ by cos g Lx+ 6,(1)]. (46)

Substituting Egs. (45) and (46) into Egs. (16) and (17) and
multiplying the resultant equations, respectively, by sin g [x
+6,(1)] and sin g [x+ 6,(1)], and performing the integral over
X, we obtain

de

1 . .
g.—_ =cy 8inq.(6; = 6,) + ¢y, sin(g,.0,),

dt “7)

do. . .
ch_tz =—cy;sin g (6, = 6) + ¢y sin(g.6,),  (48)
where
ci=-— az_(ﬁl’ Cpp=— > (49)
i 1
.
C21=1TIJ/], Cp=-— _i (50)

1 1

It is noted that these coefficients are positive. Linearizing the
set of equations (47) and (48) around the stationary solution
6,=6,=0, we obtain the eigenvalue equation

2 _
N = (crp+crp=cap+ cp)N +¢11Can = C1C1p + C1C2n = 0.

(51)
The Hopf instability condition is
Cli+Clp—Coy+cp>0 (52)
and
€112~ €21C12 + €262 > 0. (53)

We have verified that the condition (53) is always satisfied.
The condition (52) yields €, =0.01404 which agrees quite
well with the numerical simulations €, =0.0141. For e
< ez*, the set of equations (47) and (48) exhibits a limit cycle
oscillation as shown in Fig. 7. The oscillations themselves of
¢ and ¢ are found to be quantitatively in agreement with the
simulations (though not shown) and hence the lowest mode
expansion in Egs. (41) and (42) is justified self-consistently.

If the value of € is further decreased, the limit cycle os-
cillation disappears and it turns out that #; and 6, increase
(or decrease) monotonously as shown in Fig. 8. This behav-
ior corresponds to the modulated traveling wave shown in
Fig. 6(a). This occurs for € smaller than €~0.0044, which is
slightly smaller than the other bifurcation threshold ¢,
=0.0055. The origin is attributed to the fact that the approxi-
mation used in the derivation of Egs. (47) and (48) becomes
worse for smaller values of €. In fact, the time-dependence of
¢ and ¢, is not considered. Nevertheless, the theory repro-
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FIG. 8. Time evolution of 6, (solid line) and 6, (dashed line) for
€=0.004 obtained numerically from Egs. (47) and (48).

duces the simulations qualitatively and the global dynamics
for 1=0 are understood almost completely.

V. DISCUSSION

In the preceding sections, we have investigated, for the
first time, entrainment and modulation of a traveling wave
under external forcing which depends on both space and
time. The dynamical phase diagram has been obtained nu-
merically. Although we restrict ourselves to the case such
that the spatial period of the external force is the same as that
of traveling waves, we have found several nontrivial dynam-
ics. (1) When ) = w,, the wave trains entrain with the exter-
nal forcing. (2) When  is much different from w,, this
entrainment breaks down. (3) When external forcing is suf-
ficiently strong, the traveling waves are pinned. (4) When the
forcing is intermediate, trapped oscillations of wave trains
are observed. We have performed a theoretical analysis based
on the amplitude equation and the phase equations.

We emphasize that our traveling waves are spontaneously
formed without external forcing whereas those in Ref. [18]
are induced by the external forcing. As a result, there is an
essential difference in the amplitude equation. In our case,
the coefficients of the amplitude equation (19) are complex
whereas those are real in Ref. [18] as well as in more recent
studies [19,20]. There is one similarity in both studies. That
is, the spatially uniform modulation of waves as in Fig. 5(c)
appears also in Ref. [18]. However, more interesting dynam-
ics such as the trapped oscillations can never exit in the
system in Ref. [18]. Emergence of the traveling wave in the
opposite direction to the external forcing due to reflection is
also a characteristic feature of the present system.

Although the present study starts with the specific model
system, we believe that the results are quite general for
modulation dynamics of spontaneously formed traveling
waves independent of the details of the model equations.
This will be confirmed if one develops a theory such as
phase dynamics to describe the modulated waves beyond the
linear stability analysis. In fact, the coupled phase dynamics
given by Eqgs. (47) and (48) provides us with a general theory
of trapped oscillations of domains under external force. It is
our hope that the present study will stimulate experiments for
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control of self-organized dynamic patterns far from equilib-
rium by using external forcing.
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APPENDIX

In this Appendix, we derive the condition of entrainment
of the traveling waves with the external forcing. Because we
consider the case g;=q, and the spatially uniform modula-
tions, we omit the diffusion term in Eq. (19)

aw . .
7R =AWR _g|WR|2WR + §e’(0_‘”c)t+l§,

P (A1)

where we have put
€ =g, (A2)

with §=(E{2+6£2)1/2 and tan 8=€}/€]. Putting Wy=Re'’, we
obtain

JR
E:AIR—g1R3+§cos[(Q—wc)t+ 6-0], (A3)
00
E =A2 - ngZ + g Sln[(Q - (,()C)t + 06— 0] (A4)

The amplitude R is split into the equilibrium solution and its

deviation as
R=Ry+r(1), (A5)

where Ry=(A,/g,)"? and the deviation r obeys

1%
;::—ZAlr—3g1R0r2—glr3+ Ecos[(Q—w, )+ 5-6].

(A6)

Because the amplitude relaxes much faster than the phase,
we may approximate dr/dt=0 so that we have up to the
lowest order of ¢

r= Ji cos[(Q— w,)t+ 8- 0]. (A7)

Substituting this into Eq. (57), we have a closed equation for
the phase variable

J
T (- of) - asin(n+0),

P (A8)

where @® has been defined by Eq. (35) and we have intro-
duced
(1) = 0(1) - (Q - w. )t = 5.

The constants « and © are defined by

(A9)
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2\ 12
a:lf(ug—zz) , (A10)
0 81
@:tan‘1<&). (A11)
81

Equation (61) implies that when |Q-w"|<a, there is a
stable equilibrium solution =0 which corresponds to the
complete entrainment with the external forcing. When [Q
- f|>a, this entrainment breaks down. This condition

PHYSICAL REVIEW E 72, 046216 (2005)

should be equivalent with >0 in Eq. (38). However, we
have not tried to prove this equivalence because the expres-
sion is complicated, but we verified numerically that these
two conditions agree with each other quite precisely. From
Egs. (A7) and (A9), we obtain

r(t) = £ cos 7(r). (A12)

24,

Therefore, although | 7] increases in time for |Q—wf|> a, the
amplitude oscillates within a finite interval.
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